Atherogenic Mechanisms of Electronic Nicotine Delivery Systems - Nicotine is an abundant toxicant in various tobacco products including cigarette smoke,
smokeless tobacco, cigars, cigarillos, and hookah. The use of tobacco products increase the risk
for atherosclerosis. Although usage of conventional cigarette has steadily declined over the last
three decades, usage of new and emerging tobacco products and electronic nicotine delivery
systems (ENDS) such as electronic cigarettes (e-cig), e-hookah, and e-cigars has increased
exponentially. ENDS aerosolize a solution known as an “e-liquid” (typically a combination of
propylene glycol, PG, and vegetable glycerol, VG) that contains a small percentage of nicotine.
Although several combustion products and toxins such as CO and tobacco-specific nitrosamines
are non-detectable in ENDS, carbonyls including short-chain toxic aldehydes (acrolein,
formaldehyde, acetaldehyde, etc.) have been detected in e-cig-derived aerosols up to levels
found in tobacco smoke. Our preliminary data suggest that exposure to e-cig or its components,
such as acrolein and nicotine (oral exposure) induce macrophage activation (cytokine formation,
MMP activation, and apoptosis) and exacerbate atherosclerosis. Conversely, quenching of
endogenous aldehydes by feeding with the endogenous dipeptide - carnosine (β-ala-his) or
overexpressing carnosine synthase in macrophages prevents atherosclerosis. Our preliminary
studies also show that chronic exposure to e-cig, nicotine, and acrolein increase the expression
of micro RNA-21 (miR-21) in the aortae of atherogenic mice; and acrolein and nicotine induce
miR-21 in macrophages in culture, presumable as an adaptive response to macrophage
activation. Based on these observations we hypothesize that miR-21 decreases ENDS-induced
atherogenesis by preventing macrophage activation by ENDS-derived aldehydes and nicotine.
To test this hypothesis, we will 1) Examine the effect of e-cig on atherogenesis. In LDL receptor-
null mice exposed to filtered air, varying proportions of propylene glycol (PG):vegetable glycerin
(VG), PG:VG + nicotine, and JUUL-specific e-liquids, we will quantify the time-, dose-, and sex-
dependent changes in atherosclerotic lesion formation. We will examine how ENDS and their
components affect the plaque composition, the nature, and the stability; 2) Delineate the
atherogenic contribution of ENDS-derived aldehydes. We will examine whether quenching of e-
liquid and ENDS-derived aldehydes by oral feeding with carnosine or macrophage-specific
overexpression of carnosine synthase prevents macrophage activation and atherogenesis and
how are these processes regulated by miR-21; 3) Elucidate the atherogenicity of ENDSderived
nicotine. We will probe how ENDS activate macrophage α7nAChR, and how macrophage-specific
deficiency of α7nAChR affects ENDS-induced macrophage activation and atherogenesis. We will
also examine how miR-21 regulates these processes. Overall, the proposed studies will establish
novel animal models of ENDS-induced atherosclerosis, and delineate the underling chemical,
cellular, and molecular mechanisms of toxicity.