Project Summary and Relevance
The goal of this project is to develop mechanisms by which ordinary proteins can be turned into ligand-
activated conformational switches. When naturally-occurring proteins of this type are discovered, their
engineering can result in technologies that transform biology. For example, CRISPR-associated protein
catalytic activity is switched on by binding of guide RNA, and calmodulin undergoes a large conformational
change upon ligating calcium. Developing these proteins into DNA manipulation tools and fluorescent calcium
sensors, respectively have revolutionized gene editing and the study of calcium signaling. The current proposal
asks the question, “what else is possible if other proteins and enzymes can be made to switch on/off by binding
of DNA, RNA, or other ligands?”.
The proposed project takes a combined biophysical, computational, and cellular approach to develop a
general mechanism for linking protein function to ligand binding. Three families of protein switches will be
created. The first is a biosensor that plugs into existing DNA tools (such as aptamers and toehold-mediated
strand displacement hairpins) without any modification to the sensor, to detect a DNA or RNA sequence of
choice. The output is ratiometric (blue/green) luminescence that can be detected by cell phone camera. The
second family employs fibronectin 3 ‘monobodies’ as the input domains and fluorescent proteins as the output
domains to provide a ratiometric FRET response, or large increase in fluorescence intensity, when
encountering an intracellular target. In the third switch design, the enzymatic activity of a bacterial RNase is
turned on by cytomegalovirus (CMV) RNA to kill CMV-infected human cells. This last aim addresses the
pressing need of preventing transplant-related CMV disease.
Relevance. This study will open the biological activity of the human proteome to potential regulation by
binding of nucleic acids, proteins, and small molecules. The modular design allows mixing and matching of
different proteins to generate molecules with functionalities not found in nature. Examples include biosensors
for pathogens and disease biomarkers, and an enzyme that kills virally-infected human cells while leaving
uninfected cells unharmed.