VIRTUAL PELVIC SURGERY SIMULATOR FOR THE PREVENTION OF SURGICAL ERRORS - Project Summary
Surgical errors are commonplace and can have devastating consequences. More than 200 million surgeries
occur annually worldwide and, in industrialized countries, preventable complications occur in up to 22% of
cases for some procedures. Consequent permanent disability or mortality rates range between 0.4% and
0.8%. Errors can have numerous origins, including cognitive errors of judgment, missing a surgical step,
performing them in the wrong order, or simply committing an error in technical execution. These can lead to
poor surgical outcomes, poor patient satisfaction, reoperation, and litigation. Most surgeons are well aware of
the high-risk steps in a given procedure, yet for most there is no widespread and reliable technology to prevent
errors. We propose groundbreaking research in surgical error prevention by developing simulation technology,
based on mathematical reconstructions of human tissue that can be utilized for our overall mission, to create a
system to identify, model, and prevent surgical errors. To accomplish this, we will use motion analysis and
high-fidelity 3-D models to simulate and measure surgical errors. We will analyze errors in a complex, high-risk
step of one particular surgery, the midurethral sling (MUS) procedure. This surgery is an ideal choice for
modeling individual surgeon error. Approximately 170,000 MUS surgeries are performed annually in the United
States, a number that will likely increase given the aging US population. In performing the MUS, the surgeon is
tasked with blindly guiding a sharp steel trocar past the bladder, bowel, and major blood vessels, so the
surgeon must exhibit excellent bimanual dexterity and the ability to envision a blind 3-D space. If the trocar is
not guided properly, complications can turn an elective minor surgery into a costly, protracted hospital course
that may involve blood transfusions, a bowel resection, a colostomy, even sepsis and death. Novices are
understandably anxious about performing this on a patient. We hypothesize that surgical error from trocar
passage in the MUS surgery can be predicted, and thus avoided, by discrete changes in the kinematics of the
surgeon’s shoulder, arm, and hand and by the spatio-temporal characteristics of trocar passage. We will create
a 3-D pelvic simulator and use motion analysis with sensors to identify and prevent surgical errors during this
complex, high-risk step. We will test the hypothesis with the following Aims: Aim 1: Create a high-fidelity pelvic
simulator capable of identifying surgical errors involved in one surgery, the midurethral sling. Aim 2: Identify
the kinematics of surgeon gross motor movements and of the surgical instrument during simulated trocar
passage. Aim 3: Develop virtual surgical feedback software that when added to a printed pelvic simulation
model will further reduce novice errors in the Midurethral Sling surgery. Our high-impact research and multi-
disciplinary team is revolutionary in its approach to surgical error prevention. Our methods can be applied
subsequently to a multitude of high-risk steps in numerous surgeries, and thus has the potential to prevent
surgical injury for many patients.