The Influence of Virtual Reality Environments on Voice Perception and Production - Abstract
Voice disorders are the most common communication condition across the lifespan. Consequences are non-
trivial across health, social, occupational, and emotional domains. Voice therapy is the first-line treatment
approach for the majority of these disorders. A critical factor in therapy success has to do with generalization
of motor behaviors trained in therapy to real-life, everyday situations. Data are sparse, but generally not
encouraging regarding the very generalization that stands at the center of the therapy process. The well-
documented Specificity of Practice principle suggests therapeutic contexts should replicate as closely as
possible the sensory contexts that the patient will encounter in real life for generalization to occur. Virtual
Reality, made all the more attractive due to recent technological advances, has the ability to create such
replication but has been vastly underutilized in voice training and therapy and understudied to date. The
proposed series will address this gap at an initial level by using high-tech Virtual Reality (VR) to start to
replicate credible audiovisual environments in the context of voice production, and moreover to investigate
the effects of this environment on self-perception and production of voice from a basic science perspective.
Specific independent, hypothesis-driven Aims are: (SA1) examine the effect of single sensory input
(auditory and visual input separately) vs. multisensory input (audiovisual) on speakers’ perception of their
own voices’ loudness, vocal effort and vocal comfort, using VR in a within-subjects experimental design;
(SA2); examine the effect of single sensory input (auditory and visual input separately) vs. multisensory
input (audiovisual) on speakers’ production of their own voices, using VR in a within-subjects experimental
design; and (SA3) obtain preliminary data on the utility of voice training (resonant voice) in the VR
environment compared to a typical clinical environment, using a between-subjects experimental design in
vocally healthy teachers.
The series will utilize a high degree of innovation and sophisticated VR technology to provide preliminary
data pertinent to basic science and to lay the empirical foundation for a subsequent R01 proposal, which
will build on the present work expanding both its theoretical and translational value.