Project summary
Novel mechanism for regulating macrophage polarization in sepsis
Sepsis is a challenging clinical problem, and the pathogenesis is not clear. Macrophages (MΦs) are dynamically
modified by septic insult, with different cell subsets arising during early and late stages of sepsis development.
MΦs are heterogeneous in tissues; they polarize into M1 (pro-inflammatory) and M2 (anti-inflammation) upon
environmental stimuli. How MΦ polarization occurs in response to sepsis is largely unknown. Our long-term goal
is to elucidate the molecular mechanism underlying MΦ polarization in sepsis pathogenesis. Here, we propose
to test the original idea that Sirt6 drives MΦ polarization in septic lung. Sirt6 is a histone deacetylase family
member that has been shown to promote TNF-α production and maintain MΦ glucose homeostasis. Thus, Sirt6
modification of histone marks may be involved in the epigenetic regulation of MΦ polarization. Moreover, a septic
insult alters the MΦ microRNA (miRNA) profile, important mediators of post-transcriptional gene expression,
which are increasingly recognized as being critical to myeloid cell development. Whether miRNA regulates Sirt6
in MΦ polarization in response to septic insult is unknown. Our central and innovative hypothesis is that
sepsis-associated changes in miRNA regulate the expression of Sirt6, which in turn targets histone marks to
drive expression of genes involved in MΦ polarization. In preliminary studies, we found that (1) sepsis induces
Sirt6 and phenotypic changes in pulmonary MΦs; (2) Sirt6 is differentially expressed in BMDM M1 and M2 cells
and determine their cytokine phenotypes; (3) A typical miRNA regulates Sirt6 expression in MΦ polarization; and
(4) an acetylated histone mark is differentially expressed in M1 and M2 in an opposite pattern to that of Sirt6.
Based on these evidences, we proposed to determine whether Sirt6 controls pulmonary MΦ polarization in
sepsis and if yes, determine the underlying mechanism. In Aim 1, we will set up a myeloid-specific Sirt6 knockout
mice strain to define how deletion of Sirt6 affects pulmonary MΦ phenotypes during early and late sepsis. We
will also determine the association of Sirt6 with pulmonary MΦs in septic lung by flow cytometry sorting and
Western blot analysis. In Aim 2, we will explore the roles of miRNA and histone acetylation in Sirt6 regulation of
MΦ polarization. We expect that the proposed research will identify Sirt6 as a regulator of MΦ polarization and
characterize a miRNA-Sirt6-H3K27ac axis as a novel mechanism that drives pulmonary MΦ activation in sepsis
pathogenesis. Our findings may lead to the identification of novel targets for the development of new therapies
that address the pathophysiology of sepsis.